Memory#

pytme is aware of the memory required for template matching operations. This enables us to map template matching problems to the available hardware and compute a splitting strategy ahead of time.

Memory usage helpers#

estimate_ram_usage(shape1, shape2, ...[, ...])

Estimate the RAM usage for a given convolution operation based on input shapes, matching_method, and number of cores.

Abstract Base#

MatchingMemoryUsage(fast_shape, ft_shape, ...)

Class specification for estimating the memory requirements of template matching.

Memory usage classes#

MatchingMemoryUsage(fast_shape, ft_shape, ...)

Class specification for estimating the memory requirements of template matching.

CCMemoryUsage(fast_shape, ft_shape, ...)

Memory usage estimation for CC scoring.

LCCMemoryUsage(fast_shape, ft_shape, ...)

Memory usage estimation for LCC scoring.

CORRMemoryUsage(fast_shape, ft_shape, ...)

Memory usage estimation for CORR scoring.

CAMMemoryUsage(fast_shape, ft_shape, ...)

Memory usage estimation for CAM scoring.

FLCSphericalMaskMemoryUsage(fast_shape, ...)

Memory usage estimation for FLCMSphericalMask scoring.

FLCMemoryUsage(fast_shape, ft_shape, ...)

Memory usage estimation for FLC scoring.

MCCMemoryUsage(fast_shape, ft_shape, ...)

Memory usage estimation for MCC scoring.

MaxScoreOverRotationsMemoryUsage(fast_shape, ...)

Memory usage estimation MaxScoreOverRotations Analyzer.

PeakCallerMaximumFilterMemoryUsage(...)

Memory usage estimation MaxScoreOverRotations Analyzer.

CupyBackendMemoryUsage(fast_shape, ft_shape, ...)

Memory usage estimation for CupyBackend.