Extensions#
- absolute_minimum_deviation(*args, **kwargs)#
Overloaded function.
absolute_minimum_deviation(coordinates: numpy.ndarray[numpy.float64], output: numpy.ndarray[numpy.float64]) -> None
Compute pairwise absolute minimum deviation for a set of coordinates (float64).
absolute_minimum_deviation(coordinates: numpy.ndarray[numpy.float32], output: numpy.ndarray[numpy.float32]) -> None
Compute pairwise absolute minimum deviation for a set of coordinates (float32).
absolute_minimum_deviation(coordinates: numpy.ndarray[numpy.int64], output: numpy.ndarray[numpy.int64]) -> None
Compute pairwise absolute minimum deviation for a set of coordinates (int64).
absolute_minimum_deviation(coordinates: numpy.ndarray[numpy.int32], output: numpy.ndarray[numpy.int32]) -> None
Compute pairwise absolute minimum deviation for a set of coordinates (int32).
- find_candidate_coordinates(*args, **kwargs)#
Overloaded function.
find_candidate_coordinates(coordinates: numpy.ndarray[numpy.float64], min_distance: float) -> numpy.ndarray[numpy.float64]
Finds candidate coordinates with minimum distance (float64).
find_candidate_coordinates(coordinates: numpy.ndarray[numpy.float32], min_distance: float) -> numpy.ndarray[numpy.float32]
Finds candidate coordinates with minimum distance (float32).
find_candidate_coordinates(coordinates: numpy.ndarray[numpy.int64], min_distance: int) -> numpy.ndarray[numpy.int64]
Finds candidate coordinates with minimum distance (int64).
find_candidate_coordinates(coordinates: numpy.ndarray[numpy.int32], min_distance: int) -> numpy.ndarray[numpy.int32]
Finds candidate coordinates with minimum distance (int32).
- find_candidate_indices(*args, **kwargs)#
Overloaded function.
find_candidate_indices(coordinates: numpy.ndarray[numpy.float64], min_distance: float) -> numpy.ndarray[numpy.int32]
Finds candidate indices with minimum distance (float64).
find_candidate_indices(coordinates: numpy.ndarray[numpy.float32], min_distance: float) -> numpy.ndarray[numpy.int32]
Finds candidate indices with minimum distance (float32).
find_candidate_indices(coordinates: numpy.ndarray[numpy.int64], min_distance: int) -> numpy.ndarray[numpy.int32]
Finds candidate indices with minimum distance (int64).
find_candidate_indices(coordinates: numpy.ndarray[numpy.int32], min_distance: int) -> numpy.ndarray[numpy.int32]
Finds candidate indices with minimum distance (int32).
- max_euclidean_distance(*args, **kwargs)#
Overloaded function.
max_euclidean_distance(coordinates: numpy.ndarray[numpy.float64]) -> tuple[float, tuple[int, int]]
Identify pair of points with maximal euclidean distance (float64).
max_euclidean_distance(coordinates: numpy.ndarray[numpy.float32]) -> tuple[float, tuple[int, int]]
Identify pair of points with maximal euclidean distance (float32).
max_euclidean_distance(coordinates: numpy.ndarray[numpy.int64]) -> tuple[float, tuple[int, int]]
Identify pair of points with maximal euclidean distance (int64).
max_euclidean_distance(coordinates: numpy.ndarray[numpy.int32]) -> tuple[float, tuple[int, int]]
Identify pair of points with maximal euclidean distance (int32).
- max_index_by_label(*args, **kwargs)#
Overloaded function.
max_index_by_label(labels: numpy.ndarray[numpy.float64], scores: numpy.ndarray[numpy.float64]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.float64], scores: numpy.ndarray[numpy.float32]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.float64], scores: numpy.ndarray[numpy.int64]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.float64], scores: numpy.ndarray[numpy.int32]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.float32], scores: numpy.ndarray[numpy.float64]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.float32], scores: numpy.ndarray[numpy.float32]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.float32], scores: numpy.ndarray[numpy.int64]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.float32], scores: numpy.ndarray[numpy.int32]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.int64], scores: numpy.ndarray[numpy.float64]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.int64], scores: numpy.ndarray[numpy.float32]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.int64], scores: numpy.ndarray[numpy.int64]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.int64], scores: numpy.ndarray[numpy.int32]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.int32], scores: numpy.ndarray[numpy.float64]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.int32], scores: numpy.ndarray[numpy.float32]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.int32], scores: numpy.ndarray[numpy.int64]) -> dict
Maximum value by label
max_index_by_label(labels: numpy.ndarray[numpy.int32], scores: numpy.ndarray[numpy.int32]) -> dict
Maximum value by label
- online_statistics(*args, **kwargs)#
Overloaded function.
online_statistics(arr: numpy.ndarray[numpy.float64], n: int = 0, rmean: float = 0, ssqd: float = 0, reference: float = 0) -> tuple
Compute running online statistics on a numpy array.
online_statistics(arr: numpy.ndarray[numpy.float32], n: int = 0, rmean: float = 0, ssqd: float = 0, reference: float = 0) -> tuple
Compute running online statistics on a numpy array.
online_statistics(arr: numpy.ndarray[numpy.int64], n: int = 0, rmean: float = 0, ssqd: float = 0, reference: int = 0) -> tuple
Compute running online statistics on a numpy array.
online_statistics(arr: numpy.ndarray[numpy.int32], n: int = 0, rmean: float = 0, ssqd: float = 0, reference: int = 0) -> tuple
Compute running online statistics on a numpy array.