NormalizedCrossCorrelationMean#
- class NormalizedCrossCorrelationMean(**kwargs)[source]#
Bases:
NormalizedCrossCorrelation
Computes a similar score than
NormalizedCrossCorrelation
, but additionally factors in the mean of template and target.\[\text{score} = \frac{(\text{target_weights} - \text{mean(target_weights)}) \cdot (\text{template_weights} - \text{mean(template_weights)})} {\text{max(target_norm} \times \text{template_norm, eps)}}\]Where:
\[\text{target_norm} = ||\text{target_weights} - \text{mean(target_weights)}||\]\[\text{template_norm} = ||\text{template_weights} - \text{mean(template_weights)}||\]Here, \(||.||\) denotes the L2 (Euclidean) norm, and \(\text{mean(.)}\) computes the mean of the respective weights.
- Parameters:
- targetNDArray
A d-dimensional target to match the template coordinate set to.
- template_coordinatesNDArray
Template coordinate array with shape (d,n).
- template_weightsNDArray
Template weight array with shape (n,).
- template_mask_coordinatesNDArray, optional
Template mask coordinates with shape (d,n).
- target_maskNDArray, optional
A d-dimensional mask to be applied to the target.
- negate_scorebool, optional
Whether the final score should be multiplied by negative one. Default is True.
- return_gradientbool, optional
Invoking __call_ returns a tuple of score and parameter gradient. Default is False.
- **kwargsDict, optional
Keyword arguments propagated to downstream functions.
Methods
Returns the score of the current configuration.
Calculate the normalized gradient of the cost function w.r.t.
Compute the matching score for the given transformation parameters.
Computes the score after a given rotation.
Computes the score after a given translation.