MaskedCrossCorrelation#
- class MaskedCrossCorrelation(target, template_coordinates, template_weights, template_mask_coordinates=None, target_mask=None, negate_score=True, return_gradient=False, interpolation_order=1, **kwargs)[source]#
Bases:
_MatchCoordinatesToDensity
The Masked Cross-Correlation computes the similarity between target_weights and template_weights under respective masks. The score provides a measure of similarity even in the presence of missing or masked data.
The formula for the Masked Cross-Correlation is:
\[\text{numerator} = \text{dot}(\text{target_weights}, \text{template_weights}) - \frac{\text{sum}(\text{mask_target}) \times \text{sum}(\text{mask_template})} {\text{mask_overlap}}\]\[\text{denominator1} = \text{sum}(\text{mask_target}^2) - \frac{\text{sum}(\text{mask_target})^2} {\text{mask_overlap}}\]\[\text{denominator2} = \text{sum}(\text{mask_template}^2) - \frac{\text{sum}(\text{mask_template})^2} {\text{mask_overlap}}\]\[\text{denominator} = \sqrt{\text{denominator1} \times \text{denominator2}}\]\[\text{score} = \frac{\text{numerator}}{\text{denominator}} \text{ if denominator } \neq 0 \text{ else } 0\]Where:
mask_target and mask_template are binary masks for the target_weights and template_weights respectively.
mask_overlap represents the number of overlapping non-zero elements in the masks.
- Parameters:
- targetNDArray
A d-dimensional target to match the template coordinate set to.
- template_coordinatesNDArray
Template coordinate array with shape (d,n).
- template_weightsNDArray
Template weight array with shape (n,).
- template_mask_coordinatesNDArray, optional
Template mask coordinates with shape (d,n).
- target_maskNDArray, optional
A d-dimensional mask to be applied to the target.
- negate_scorebool, optional
Whether the final score should be multiplied by negative one. Default is True.
- return_gradientbool, optional
Invoking __call_ returns a tuple of score and parameter gradient. Default is False.
- **kwargsDict, optional
Keyword arguments propagated to downstream functions.
References
[1]Masked FFT registration, Dirk Padfield, CVPR 2010 conference
Methods
MaskedCrossCorrelation.rotate_array
(arr, ...)Compute the matching score for the given transformation parameters.
Computes the score after a given rotation.
Computes the score after a given translation.