
- Supporting Information and User Guide -
ColabSeg:

An interactive tool for editing, processing, and visualizing
membrane segmentations from cryo-ET data

Marc Siggela,b, Rasmus K. Jensenc, Valentin J. Maurera,b, Julia
Mahamidc, Jan Kosinskia,b,c

aEuropean Molecular Biology Laboratory (EMBL) Hamburg, Notkestrasse
85, Hamburg, 20607, Germany

bCentre of Structural Systems Biology (CSSB), Notkestrasse
85, Hamburg, 20607, Germany

cStructural and Computational Biology Unit, European Molecular Biology Laboratory
(EMBL) Heidelberg, Meyerhofstrasse, Heidelberg, 60120, Germany

Contents

1 Setup and Installation 2
1.1 Setting up ColabSeg . 2
1.2 Setting up TomoSegMemTV 3

2 Features and Sample Usage 3
2.1 Segmentation with TomoSegMemTV 3

2.1.1 Usage . 3
2.1.2 Optimized Parameters and Recommendations 4

2.2 Point cloud conversion . 5
2.3 Viewer and cluster management 5
2.4 Undoing step and reloading initial data 6
2.5 Lamella editing . 6
2.6 Filtering and processing clusters 6
2.7 Fitting Membranes . 8
2.8 Analyzing membranes . 8
2.9 Saving/Exporting Files . 9
2.10 Saving a Session . 10

Email address: jan.kosinski@embl.de (Jan Kosinski)

Preprint submitted to a journal January 17, 2024

2.11 Napari Integration . 10
2.12 Using features directly from the backend 10

3 Overview of Features 11

4 Developer Guide 11

1. Setup and Installation

1.1. Setting up ColabSeg

The Installation is also explained in detail in the GitHub readme avail-
able at: https://github.com/KosinskiLab/colabseg. Make an environ-
ment with anaconda and open it:

1 conda create --name YOUR_ENV_NAME python=3.8 pip

2 source activate YOUR_ENV_NAME

Run pip in the folder where setup.py is located. This also installs all
necessary dependencies:

1 pip install .

Alternatively you can simply install from Pypi by running:

1 pip install colabseg

Then add this environment as jupyter kernel:

1 python -m ipykernel install --user --name=YOUR_ENV_NAME

and boot a new jupyter notebook or better the demo notebook colab-
seg.ipynb in the colabseg folder:

1 jupyter notebook colabseg.ipynb

Make sure to pick the correct environment as kernel to have access to
the installed software. Execute the cells in order. It is possible to skip the
tensorvoting step if segmented data is already available. Then simply load
the .mrc file. Alternatively, you can load a .h5 file which is a specific state
file of the software that contains all the metadata of the classes. When
loading a new file it is advised to either restart the kernel and start from the
top of the notebook, or at least re-run the file-loading cell. This will purge
any existing data and avoid potential issues in the experimental stage.

2

https://github.com/KosinskiLab/colabseg

1.2. Setting up TomoSegMemTV

The tool relies heavily on the TomoSegMemTV tool, which is used at
the beginning of the pipeline. TomoSegMemTV can be downloaded as an
executable directly from the developer’s page at this link:
https://sites.google.com/site/3demimageprocessing/tomosegmemtv
(please appropriately cite this work if you use ColabSeg). Note that the
path to your downloaded executable of TomoSegMemTV has to be added
manually in the GUI’s text field (Fig. 1(1)).

2. Features and Sample Usage

2.1. Segmentation with TomoSegMemTV

2.1.1. Usage

Look at Figure 1 for a visual guide. The inputs for ColabSeg can either
be prepared with custom scripts using TomoSegMemTV or using the tensor
voting GUI provided in the notebook. The optimized settings provided with
the GUI are optimized for a pixel size of approx. 13 Å± 2 Å(But also work
very well for up to 26 Å). Other sizes will require different settings since
TomoSegMemTV works on a per-voxel basis and the varying pixel size will
change how many pixels the relevant membrane features occupy. So far
these have proven to work well for a broad range of data sets but need to
be adapted on a case-by-case basis. In some cases, it is helpful to pre-filter
the data with some denoising tool. The following parameters of the pipeline
can be controlled directly in the GUI:

• base name: The base name of the input image file.

• tensor voting path: The path to the tensor voting code.

• cpus: The number of CPUs to use to run the tensor voting. the code
can run in parallel. For maximum speed run with all cores of the
machine.

• scale space: The scale space parameter for the tensor voting algorithm
used in the gaussian filtering step

• tv1 value: determines the scale factor, i.e., the number of voxels con-
sidered in the tensor voting process.

• m gaussian pre: The pre-gaussian parameter for the surfaceness cal-
culation.

3

• m gaussian post: The post-gaussian parameter for the surfaceness cal-
culation.

• m thresh: The threshold value for the surfaceness calculation.

• tv2 value: determines the scale factor, i.e., the number of voxels con-
sidered in the tensor voting process.

• s gaussian pre: The pre-gaussian parameter for the saliency calcula-
tion.

• s gaussian post: The post-gaussian parameter for the saliency calcu-
lation.

• thresholding threshhold: The threshold value for the thresholding step.

• cluster cutoff: The cutoff value for the clustering step.

• remove intermediates: A boolean parameter indicating whether to re-
move intermediate files after the segmentation is complete.

The GUI chains together all individual executables of TomoSegMemTV
and provides a gzip compressed output file in the output directory. A de-
tailed explanation is available in the TomoSegMemTV paper and user guide
(https://sites.google.com/site/3demimageprocessing/tomosegmemtv).
Users can also use the provided bash script (https://github.com/KosinskiLab/
colabseg) to run the TomoSegMemTV pipeline.

2.1.2. Optimized Parameters and Recommendations

We tested a variety of settings with TomoSegMemTV because some of
the defaults did not produce consistent results in particular when scaling to
larger data sets. For most of the data sets we used, we recommend a specific
set of parameters that produce fairly consistent results and provide a good
starting point for downstream optimization. We opt for settings where more
features are captured and filter them using the ColabSeg GUI.

1 scale_space -s 2 -f ${in}.mrc ${in}_sspace.mrc
2 dtvoting -s 15 ${in}_sspace.mrc ${base_name}_tv1.mrc
3 surfaceness -s 0.8 -p 0.5 -m 0.02 ${in}_tv1.mrc ${in}_surf1.mrc
4 dtvoting -w -s 10 ${in}_surf1.mrc ${in}_tv2.mrc
5 surfaceness -S -s 0.75 -p 0.5 -l 10 ${in}_tv2.mrc ${in}_surf2.mrc
6 thresholding -l 0.06 -2 6 ${in}_surf2.mrc ${in}_thresh.mrc
7 global_analysis -v 2 -3 3000 ${in}_thresh.mrc ${in}_global2.mrc

4

https://sites.google.com/site/3demimageprocessing/tomosegmemtv
https://github.com/KosinskiLab/colabseg
https://github.com/KosinskiLab/colabseg

13-26 Å pixel size work well with these settings and were used in our test
case with minor adaptions. The small pixel size also drastically speeds up all
steps of the processing including any usage with the ColabSeg GUI. Using -t
command it is possible to assign N processes to the task i.e. using multiple
cores. The GUI is automatically populated with the optimized values and
can be directly run by the user.

2.2. Point cloud conversion

Now look at figure 2. The output the TomoSegMemTV wrapper pro-
vided in the notebook or the final output of the bash scripts is a .mrc file
that only contains integer values i.e. 0 where no membrane present and
integer {1..N} for each membrane cluster. Any other mrc file following this
convention can be imported. In case another file was generated with any
other segmentation tool e.g. using a machine learning output using the To-
moSegMemTV connected component executable on the file can be useful to
obtain the correct file format and pre-cluster all the pieces of the file. This
also ensures that any potential issues with the file format are fixed. The file
(relative or absolute path) can be designated in the GUI and uploaded into
the point cloud converter. The conversion generates xyz coordinates from
the mrc file and can then be loaded in the following step into the GUI. Note
that large numbers of clusters > 100 can take a very long time to process.
In that case, it is also possible to run this on a cluster by directly accessing
the conversion function “convert tomo”. After this loading step, the system
is ready to be manipulated and processed in the ColabSeg GUI.

2.3. Viewer and cluster management

Now check figure 3 for a visual guide. With the data prepared the
viewer can be loaded in the next step and the segmentation visualized with
the point cloud viewer. The viewer automatically downsamples the number
of shown voxels if the number becomes prohibitively large to avoid crashing
the browser. If the points seem far apart the reason is this downsampling
procedure. However, when writing the full file this is not an issue because
the full dataset is considered. The cluster window gives a numbered list of
clusters that are initially ordered by size. Note however that when deleting
clusters or merging them this order will be changed. When the cluster is
selected in the list viewer it is highlighted in red.

It is possible to select multiple clusters by clicking the command button
and selecting multiple entries. By clicking merge clusters it is possible to
merge these clusters into one group. Any amount of clusters can be merged.
The clusters are then renumbered. This is important later if membranes

5

of different types are present in the data. In our example, we need to
merge for instance as an extended piece of membrane is patchy and multiple
clusters define the same membrane. One can merge them in this way for
further processing with fits. Similarly, clusters can be deleted if they aren’t
of interest. Removing uninteresting clusters first is helpful as this makes
ColabSeg run faster.

2.4. Undoing step and reloading initial data

Figure 3 provides a visual guide for undoing steps or reloading data. If
during the edition process, a step was performed by accident or the results
are unsatisfactory, it is possible to undo this by clicking the undo button on
the cluster management page. This restores the previous step. Note that
this is only possible ONCE! Older steps are not saved. To be sure not to
lose your progress along the way, use the hdf5 file to save the state of the
entire GUI to a file.

Alternatively, it is possible to restore the original state after loading and
converting the tomogram using the restore initial button. This is particu-
larly useful if multiple editing steps have been performed.

2.5. Lamella editing

Lamella editing tab is shown in Figure 6. This method takes a list of
cluster indices and trims the top and bottom of each cluster along a given
axis. The amount to trim is specified by trim min and trim max parameters,
which are added and subtracted from the minimum and maximum value
of the given axis, respectively. The axis to trim along is specified by the
trim axis parameter, which can take values of ”x”, ”y”, or ”z”. If an invalid
value is provided, an exception is raised. For each cluster in the provided list
of indices, the method first calculates the minimum and maximum values
along the specified trim axis. This new, trimmed array replaces the original
cluster.

2.6. Filtering and processing clusters

Now we move on to Figure 5. The output from TomoSegMemTV often
has issues from artifacts, such as fiducials or other contaminations giving
false positives which have to be filtered. Similarly, membranes on occa-
sion are very close together and are not properly separated with TomoSeg-
MemTV on its own. Possibly settings exist which enable filtering these
issues but usually, this would need to be tuned for each tomogram sepa-
rately. Therefore, features for filtering are provided to the user which can
also be used for batch processing. In any case a majority of the manual

6

labor of manual cleaning with software such as Amira should be alleviated
with these features. Our test show that this works quite well for many cases,
especially vesicles, viruses, and long planar membranes such as the plasma
membrane. The processing tab can be opened and all these features are
available there. To process a cluster first the cluster of interest needs to be
selected in the cluster list. The procedures only work on a single cluster.

1. statistical outlier removal: This function removes statistical out-
liers from a cluster of points. It takes in a cluster index parameter that
specifies which cluster to process, a nb neighbors parameter that spec-
ifies the number of neighbors to consider when computing the mean
distance, and a std ratio parameter that specifies the standard devia-
tion multiplier for distance. The function uses the Open3D library’s
remove statistical outlier function to perform the outlier removal
and updates the cluster with the remaining points.

2. dbscan clustering: This function performs DBSCAN clustering on
a cluster of points. It takes in a cluster index parameter that speci-
fies which cluster to process, a ’minimal dbscan size’ parameter that
specifies the minimum number of points required for a subcluster to
be created, an eps parameter that specifies the maximum distance be-
tween two points to be considered in the same neighborhood, and a
min points parameter that specifies the minimum number of points re-
quired to form a dense region. The function uses the Open3D library’s
cluster dbscan function to perform the clustering and update the
cluster with the resulting subclusters.

3. edge base outlier removal: This function takes in a cluster index, a
number of nearest neighbors (kn), and a threshold value as inputs. It
uses covariance-based edge detection to remove points from the point
cloud. The function first converts the input point cloud to a PyntCloud
object, calculates the eigenvalues and eigenvectors for each point, and
then uses the eigenvalues to detect edges. Points with eigenvalues
below the specified threshold are removed from the point cloud. The
resulting point cloud is then saved and returned.

A workflow that has worked well is first trimming possible fuzzy edges
of the z-stack, which might lead to the merging of adjacent membranes.
In case the tilt was not corrected during the reconstruction process, this
can be done here in postprocessing by using the rotation function. After
trimming it can also be rotated back to its original angle such that the
segmentation fits with the raw data in case the outputs need to be overlaid

7

with other data. Next, it is helpful to run the edge outlier removal to remove
possible features which are highly irregular or have a fast-changing curvature
field. In principle, some parameters can be adjusted and optimized for each
tomogram. However, after rigorous testing across numerous tomograms,
we found the settings worked best with the presets provided. Therefore, no
settings can be changed here. Ideally, points that connect the clusters which
were falsely connected are removed. Then it is possible to recluster these
with the DBSCAN method. If successful, the number of total clusters will
increase drastically. The parameter defaults for DBSCAN work well with a
≈ 13 Åpixel size (also works for up to 26 Å). If the pixel size is larger the
radius parameter and the minimal points parameter need to be increased
to get a sufficient coverage and not lose too many points. This workflow
usually works quite well. If the edge outlier removal is not sufficient, it is
also possible to use the statistical outlier removal strategy. This is often
more aggressive and removes more points but enables proper membrane
separation. The smaller the sigma parameter is chosen the more points are
removed from the segmentation. The parameters can be varied. Here it
has proven helpful to test a parameter and if necessary undoing the step by
returning to the cluster selection menu and clicking the undo button.

2.7. Fitting Membranes

The visual guide for fitting can be found in Figure 6. ColabSeg allows
fitting clusters with radial basis function (RBF) fits if the membranes are
very planar or spheres for vesicles or viruses. To use this feature first select
the cluster you want to fit from the cluster list. Click on the fitting tab
next and choose the fitting method, either for a sphere or using the RBF fit.
Important for the RBF is to choose the correct plane in which the membrane
lies. The fit chooses the coordinate system accordingly to apply the fit
properly. In some instances, the fit is off at primarily the edges and this
can lead to issues when fitting the data. Therefore, it is also possible to fix
this by removing all points which are further from the original segmentation
than a defined distance. This can be helpful to trim possible inaccuracies
which can be introduced through the RBF fit. Note that the max distance
should be chosen that any holes in the membranes are properly patched.

2.8. Analyzing membranes

ColabSeg offers some fundamental analysis features to analyze quantities
which are commonly of interest to users. The features can be expanded
but currently provide some commonly used properties and quantities. The
interface is shown in Figure 8

8

• Analyze membrane normals: Membrane normals are often of in-
terest to perform constrained particle picking along membrane surfaces
or for use in other software packages. After selecting a cluster users
can simply use the get normals button for this cluster

• Analyze macromolecule-membrane distances: In many cases it
might be of interest to analyze the distance between macromolecule
positions which are picked manually, using template matching or deep
learning. This is a quantity that is easily accessible from tomography
data and often of interest. ColabSeg allows loading a point cloud
from a .txt file which contains the xyz positions of a file. Using the
analyze macromolecule-membrane distances button users calculate the
distance between these points and the SELECTED membranes. All
clusters must be selected if all membranes should be considered. The
function also plots the data as a histogram and users can input the
number of bins freely. Both the plot and the data (unbinned raw
distances) can be saved in the save tab.

• Vesicle radii analysis: In the previous section we showed that sphere
fits are possible. Users can select sphere fits and extract the estimated
radii using the analyze vesicle radii feature. the results can also be
plotted as histogram or written to disc as raw data.

Other analyses such as membrane curvature have been already devel-
oped and are freely available. We suggest exploring the pycurv package
(https://github.com/kalemaria/pycurv) or the morphometrics toolkit
(https://github.com/GrotjahnLab/surface_morphometrics) to analyze
the resulting segmentations for membrane curvature. Therefore, at this
point we don’t provide support for these additional dependencies.

2.9. Saving/Exporting Files

Saving and exporting is shown in Figure 7. When all the processing is
done the files can be saved as various file output formats. The file formats
are a text file that saves the positions as XYZ coordinates. Alternatively,
the data can be written as an mrc file for further processing. Specify a
filename in the output filename text box. By default, ColabSeg only writes
those clusters and fits which were selected manually. If further analysis is
only to be performed on a subset of the membranes it is possible to save
individual or merged clusters.

9

https://github.com/kalemaria/pycurv
https://github.com/GrotjahnLab/surface_morphometrics

2.10. Saving a Session

If you want to continue editing and want to save the session for further
edits at a later point it is possible to save a session using an hdf5 file format
which dumps the state of the backend into this file. The file ending should
be “.h5”. This file format can be reloaded in the conversion section above
as an alternative entry point to populate the GUI with data.

2.11. Napari Integration

ColabSeg offers integration with Napari such that users can seamlessly
move between the two software by porting point cloud information between
them and loading raw tomograms for validating the segmentations (see Fig.
9 and 10). All these features are available in the Napari Integration. First, a
reconstructed tomogram must be provided in the raw mrc file text field (Fig.
??, 1). This should be the tomogram that was initially segmented using
TomoSegMemTV, membrain-seg, or any other tool. Then by clicking the
open Napari button an independent Napari Session is started from ColabSeg.
In this session all point cloud clusters, fits, and protein positions are loaded
as points object along with the raw mrc image (Fig. ??). The data can
be inspected as 2D slices or in a 3D view. Users have access to all features
in Napari such as manual editing of the point objects. Clusters can be
highlighted using the custom highlight button in the bottom left (Fig. 10).
After editing users can reimport the data into colabseg using the sync from
Napari button to further analyze or edit their data. By doing so users have
access to features from both software and can integrate with other tools and
data ecosystems easily.

2.12. Using features directly from the backend

the ColabSegData class can be used directly from a script to partially
batch process tomograms. We recommend using ColabSeg with the GUI
because of the high heterogeneity of the data. For instance the largest
cluster might not always be the one of interest. Nonetheless, in some cases
batch processing might be of interest. Please also refer to the repository
for further information. Here we show how to load a file from an mrc file
and convert it to a point cloud. The processing function listed in table 1
can be combined to automatically process the data. If the code calls the
boot gui() function it needs to be run from a notebook. Otherwise it is
possible run such a script directly using the python interpreter.

10

1 from colabseg.tensorvoting_wrapper import *

2 from colabseg.segmentation_gui import *

3 import os

4

5 num = "00602"

6 os.chdir(f’/Users/kjeldsen/segmentation/colab-seg/data/untreated_segmented/{

↪→ num}’)

7 gui = JupyterFramework()

8 # mandatory steps to properly load a tomogram from an mrc file

9 gui.data_strucutre = ColabSegData()

10 gui.data_structure.load_tomogram(f’{num}_6.80Apx_binned_global2.mrc’)

11 gui.data_structure.convert_tomo()

12 gui.data_structure.get_lamina_rotation_matrix()

13 # variable processing steps which can be performed on the data

14 gui.data_structure.merge_clusters(cluster_indices=[0,1])

15 gui.data_structure.delete_cluster(cluster_index=2)

16 gui.data_structure.delete_cluster(cluster_index=2)

17 gui.data_structure.dbscan_clustering(cluster_index=0, minimal_dbscsan_size

↪→ =1000, eps=40, min_points=20)

18

19 # if you want to boot the GUI this code needs to be run from a notebook.

20 # otherwise execution as script is possible

21 gui.boot_gui()

Listing 1: Load and process file from backend

3. Overview of Features

The current functionality of ColabSeg is summarized here (table 1).
These function can be used directly from the backend or the GUI with the
respective buttons. Developers are encouraged to view the source code for
more details, open issues with possible questions, and submit pull requests
with their code contributions. A more comprehensive API documentation
is available at https://kosinskilab.github.io/colabseg/.

4. Developer Guide

ColabSeg offers a platform for developers to add new processing or anal-
ysis features in the future. Adding new functionality that operates on the
membrane segmentations for analysis or processing purposes is straightfor-
ward. Developers only need to follow three steps to add new features to
both the backend and frontend.

• Add feature to backend: First add the new feature to the ColabSegData
backend class. For membrane manipulation it should interact with

11

https://kosinskilab.github.io/colabseg/

Feature function name

load .stl load stl file

load .txt load point cloud

load .mrc load tomogram

load hdf5 file load hdf

convert tomogram convert tomogram

Merge cluster merge clusters

Delete cluster delete clusters

Rotate lamina plain fit and rotate lamina

Trim top and bottom trim cluster edges cluster

Statistical outlier removal statistical outlier removal

Eigenvalue outlier removal eigenvalue outlier removal

DBSCAN clustering dbscan clustering

Fit radial basis function interpolate membrane rbf

Fit spheres interpolate membrane sphere

Measure sphere radii get selected sphere radii

Crop fit around membrane crop fit around membrane

Write output .mrc file write output mrc

Write output .h5 file save hdf

Calculate membrane normals calculate normals

flip membrane nomrals flip normals

delete normals delete normals

Load protein positions load protein position

protein membrane distance analyze protein membrane min distance

Save distances save values txt

Save radii save values txt

Save normals save values txt

Visualize tomogram slice extract slice

Table 1: Overview of ColabSeg processing features associated with the ColabSegData class
which are also accessible in the GUI.

self.cluster list tv or for fit manipulation with self.cluster list fits.
The function shoudl take a cluster index or cluster index as argu-
ment (See the merge clustersmethod as example). If the code should
interact with proteins it can read the position saved in self.protein positions list[0]

(see the analyze protein membrane min distance method as exam-
ple)

• Add execution command to frontend: To properly call the back-

12

end function in the frontend and ensure the visualization is properly
loaded and re-loaded after manipulating the data. The function should
include:

1 self.data_structure.backup_step_to_previous()

2 # your metod here

3 self.reload_gui()

4

Listing 2: Load and process file from backend

This ensures the user can re-load the previous step and the GUI is
reloaded after executing the novel analysis function. The cluster or fit
indices that are selected in the multi selection tab can be accessed using
self.all widgets["cluster sel"].value or self.all widgets["fit sel"].value

variables. These are automatically updated. they can be passed to the
cluster indices or fit indices parameters of a novel function. For
proteins this is not required.

• Add gui element: The button command which wraps the command
in the backend needs to be accessible from the frontend by some GUI
element. The button must be defined in the gui elements cluster analysis

method and be part of the self.all widgets dictionary. Button de-
tails can be seen in the ipywidget documentation. The buttons are
ordered in a number of hbox an vbox commands. Make sure that the
button is also added to the appropriate tab. We recommend adding it
to the analysis tab or the fitting tab.

With these three steps the new features should be readily accessible. In
general we recommend to mirror the code from one of the existing features
since this would be the easiest to get the expected behavior. We invite
developers to open issues or pull request for discussion on new features.

13

1

5

2

4

3

Figure 1: TensorVoting Menu. (1) Field to provide the absolute path to the folder containing the TomoSegMemTV executables. All
must be located in the same folder, and the names kept as downloaded. (2) Input for the relative or absolute path of the input .mrc
file to be processed in the pipeline. (3) Settings according to the manual of TomoSegMemTV. The slides are ordered in the sequence
of the steps as they are applied as recommended by TomoSegMemTV. (4) Runs the complete tensor voting pipeline with the settings
provided. (5) Sets all sliders to optimized settings which work well for a 13 Å/voxel size .

1 2 3 4 5

Figure 2: Data Loading Menu. 1 Relative or absolute path for the file to be loaded in the UI. 2 Load an mrc or gzipped mrc file from
disc. The mrc file is internally converted to a point cloud.3 Loads precalculated points from a txt file which contains 3 columns with
X, Y, and Z coordinates. 4 Loads a .stl mesh file from e.g. IMOD (only the positions of the points no edges or faces). 5 Alternative
to the segmentation it is possible to load a state file from a previous session. Only hdf5 files generated with ColabSeg (see saving) can
be loaded here. This restores the complete state of the GUI.

1

2

4

3

Figure 3: Cluster Selection Tab. 1 Listing to select clusters. Multi-select is possible. the clusters are highlighted in red in the 3D
viewer if they are selected. 2 Tools to undo the last step or reload the initial state of the GUI, which can undo all previous processing
steps. 3 Delete one or multiple clusters which are selected in the cluster selection window (1).4 Merge all selected clusters into one.
Note that the numbering of the clusters can change.

1 2

Figure 4: Lamella Editing Tab. 1 Aligns the global plane of the lamella with the xy plane if they were not corrected during recon-
struction. This is useful for trimming. The rotation can be restored to the original angle to overlay with raw data. 2 Trimming of
the selected clusters at the top and bottom according to the values listed in trim max and trim min. The trimming is relative to the
highest and lowest point of the current height of the voxels. i.e. if applied multiple times, the z thickness of the selected membrane
clusters is continuously decreased.

1

3

2

Figure 5: Points Editing Tab. (1) Edge outlier removal tool. Runs directly on the selected cluster. The parameters for this tool
were optimized internally. Thus, they are not visible here. (2) Statistical outlier removal tool. Options are the number of neighbors
considered when calculating the average distribution around a point. The smaller the std. ratio and smaller the neighborhood the
more selective the filter becomes. (3) DBSCAN reclustering allows a single selected cluster to be reclustered. Useful after processing
or when using input data that hasn’t been checked with a connected component algorithm. Neighborhood distance i.e. radius around
each considered point can be set along with the minimal amount of points to classify a point as part of the

4

3

2

1

5

Figure 6: Fitting Tab. (1) Window showing all fits as clusters. As in the cluster selector individual fits can be picked and modulated.
(2) RBF for near-planar membranes. The place orientation gives the direction primary expanse of the plain. This needs to be adapted
otherwise the fit won’t be correct. (3) Fit a closed surface with either a sphere, ellipsoid or cylinder (4) Crops the fit around the initial
cluster. This is useful if, e.g., anything beyond the edges of the lamella shouldn’t be considered or the extrapolation is too extreme.
The distance tolerance sets the distance to the original cluster to which the fit was applied (unit is Å). (5) Possibility to delete one or
multiple fits from the list if they are no longer needed.

4

3
2

1

Figure 7: Analysis Tab. 1 Analysis of membrane normals. Fit normals calculates the normals for the selected cluster or fit. Flip normals
inverts the direction of the normals. Delete normals removes the calculated normals both from the viewer and the stored properties. 2
Load a macromolecule position list file from a txt file (or mrc file). This could be the center of mass of each protein or a full volume.
This is needed to use the analyze protein-membrane distances 3 Calculate the minimal distance between each macromolecule point
and the selected membrane cluster or fit (At least one cluster or fit must be selected!). The number of bins is only relevant for the
provided output plot and does not affect the outputs written to disc in the save tab. 4

Analyzes the radii of all sphere fits which are selected from the Fits tab. Note that at least one sphere needs to
be selected.

1 52 43

6 7 8

Figure 8: Saving Tab. 1 Checkbox if selected saves all clusters. if not only the ones selected in the GUI. 2 outputs only 0 and 1 for
all clusters and ignores the integers assigned to the clusters (many machine learning applications need this format for proper usage).
3 Save the selected files as .mrc file. 4 Save the point coordinates in an xyz file (useful output to use for geometric analyses in real
space). 5 Save the state as hdf5 state file. This saves all metadata of the GUI and can only be loaded reasonably within the GUI
(useful if more editing is needed at a later time point). 6 Save the analyzed radii from the analysis tab. Either all raw values are saved
or the figure as displayed in the analysis tab. 7 Save the macromolecule-membrane distances either as text file with all values or the
plot as displayed in the analysis tab. 8 Save the normals plotted in the analysis tab. the first 3 columns are the xyz position of the
vector, the 4-6 columns are the normal vectors.

1 2 3

Figure 9: Napari Integration Tab. 1 Text field for path to a raw tomogram from which the segmentation was derived. 2 The open
Napari button launches Napari (separate program and window) with the raw tomogram which was specified alongside the segmentation
clusters from ColabSeg 3 The Sync from Napari button imports the state of Napari clusters back into ColabSeg. Together this enables
users to move between both programs and use features of both interchangeably.

1

2

3

Open Napari

Figure 10: Napari GUI. Snapshot of ColabSeg with a loaded segmentation and a corre-
sponding slice through the tomogram together with the Napari GUI. Napari is separately
documented on the respective homepage. 1 Change the appearance and mouse selection
mode to e.g. manually delete individual points. 2 Various visualization features such as
switching between 3D and 3D 3 Custom selector which enables selecting and highlighting
a cluster in analogy to Colabeg.

	Setup and Installation
	Setting up ColabSeg
	Setting up TomoSegMemTV

	Features and Sample Usage
	Segmentation with TomoSegMemTV
	Usage
	Optimized Parameters and Recommendations

	Point cloud conversion
	Viewer and cluster management
	Undoing step and reloading initial data
	Lamella editing
	Filtering and processing clusters
	Fitting Membranes
	Analyzing membranes
	Saving/Exporting Files
	Saving a Session
	Napari Integration
	Using features directly from the backend

	Overview of Features
	Developer Guide

